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Abstract. We numerically study the dynamics of a vortex line in type-11 superconductors 
which is driven by vortex line tension, external driving force, pinning force and thermal 
fluctuations. Based on the local stochastic differential equation for the vortex motion, 
computer simulations are performed within the planar approximation (no torsion) to inves- 
tigate the pinning time, which is the time for the vortex line to overcome the pinning centre. 

The dynamics of topological defects such as domain walls, interfaces, and vortices have 
attracted much attention from the point of view of pattern formation [l]. Of various 
topological defects, vortex line (VL) structures are widely seen in many areas of physics, 
e.g. magnetic flux in type-I1 superconductors [Z], VL in a superfluid [3], disclination in 
liquid crystals [4]. dislocation in solids [5] and cosmic string in the early universe [6]. 
Recently, the thermal behaviour of the VL lattice in high-temperature superconductors 
has also been found to exhibit fascinating phenomena [7]. 

As the first step of our work to discuss such vortex motions, we here study the 
dynamical behaviour of VL in type-I1 superconductors which interacts with an impurity 
(pinning centre) and random thermal forces. Although the behaviour of only one VL is 
sufficiently far removed from reality, this situation is chosen as suitable for studying an 
elementary process of the VL motion. 

Two-dimensional simulations of thermal behaviour of the VL lattice interacting with 
randomimpuritieshave beendonein [&LlO],where thevLs(takent0 beinthezdirection) 
are projected onto the x-y plane and then the VL lattice is regarded as an ensemble of 
interacting particles on the plane. Therefore, in their simulations, effects in the z 
direction such as a line tension have been neglected. On the other hand, on the basis of 
the two-dimensional time-dependent Ginzburg-Landau equations we have investigated 
pattern formation of the magnetic flux in a superconducting film [ll]. Thus, the present 
work is in some manner complementary to those studies in the sense that we take into 
account effects of the vortex line tension as well as the transport current. 

Now we consider a flat plate of type-I1 superconductor in the x-y plane with thickness 
din the presence of the external magnetic field applied along the z axis. The transport 
current flows in they direction. Then, once we consider a single VL with its torsion being 
zero; the following motion of the VL is restricted to the x-z plane in  the absence of the 
thermal fluctuations. Thus, for simplicity we assume that the VL profile is defined in the 
two-dimensional x-z plane even in the presence of thermal fluctuations (the planar 
approximation) and is given by a function x = h(z, t )  at time t with its normal unit vector 

0953-8984/91/448635 + 06 $03.50 0 1991 IOP Publishing Ltd 8635 



8636 Y Enomoto and R KQIO 

n and tangent unit vector t ,  as is shown in figure 1. By neglecting the overhangs of the 
VL, h ( z ,  I )  is taken to be a single-valued function. 

In the above situation the equation of motion of the VL can be described by [12,13] 

( I )  r - ' ( a R / a r )  = [&(T)K + (%/c)/j]n - ( a / a R ) [ V ( R , R , ) ]  +Az, I )  

where R = ( h ( z ,  f), 2 )  denotes the position vector of the VL in the x-z plane with its 
curvature K, its normal unit vector n and line tension e ( T )  [Oo/4nl(T)]' In K at 
temperature T,  j is the transport current density, @,, is the flux quantum and c is 
the velocity of light. Here r-I 5 uBao/c2 is the kinetic coefficient with the normal 
conductivity U and the magnetic field B ,  and K = h(T) /E(T)  is the Ginzburg-Landau 
(GL) parameter. We assume that at all temperatures the coherent length e (T)  and 
the magnetic penetration depth A(T) are defined by E(T) = E(O)(1 - T/T<)-'!* and 
h(T)  5 >.(O)(l - T/Tc)- ' /2 ,  respectively, with the critical temperature T,, so that the GL 
parameter K becomes independent of temperature, i.e. K = A(O)/E(O). The potential 
energy of the VL due to an impurity located at R ,  is given by [ 141 

V ( R , R , ) -  -Aexp(-IR-R,12/a2) (2) 

A CYH,~(T)~[~ - B / H , 2 ( T ) ] [ ; r ~ ( T ) 2 / 1 6 ? r K Z ]  (3)  

with 

where CY (0 =z CY =z 1)inequation (3) denotesafractionofthecondensationenergystored 
per length in a cylinder of the size of the VL core, a in equation (2) is the range of the 
pinning centre, and H&) is the upper critical field. Finally, the last term in equation 
(1)describes the thermodynamicrandom forcewithzero meanand thecorrelationgiven 
by [12,131 

( f , ( z ,  t ~ , ( . ' ,  t y  = 2 k , ~ r s , ~ s ( ~  - z y ( t  - to) (4) 

wheref; denotes the ith component offand kBTis the usual thermal energy. 
In the following we concentrate only on the normal motion of the VL, since the main 

twodrivingforcesinequation (I), &(T)K + (Q0/c)j, are proportional ton [l],  Moreover, 
it is convenient to introduce the scaling such that length and time are measured in units 
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of E(0) and f g  = d/96kBT,,  respectively. In these units the normal motion of the YL can 
be written by 

f l .  aR/af = Cl K + Cz(T)  - C3n. (R - R , ~ )  exp( - IR - R ,  1’) + C,(T)F(z,  t )  ( 5 )  

c1 = K ’  (6 )  

C , (T)  = 4 f l ~ ’ / ( 9 I n ~ ) ( l  - T/Tc)-’(j/jo) (7) 
C3 = O I [ K ’ / ( ~  In ~ ) ] [ 1  - (In K ) / ~ K ’ ]  (8) 
c,(T) = V ~ ~ , T , ~ ~ / A ( O ) ~ ( O )  ( T / T J @  ( 1  - T / T , ) ~ ~  (9) 
(F(z ,  t)F(z’, t’)) = 6(z - 2’)6(t - t ‘ )  (10) 

with 

where j o  = cHc(0)/3f id(0)  with zero-temperature critical field H,(O) denotes 
the critical current density associated with thin-film superconductors [E]. In order 
to obtain the above equations, we have set B = H , , ( T ) ,  since we have neglected 
vortex-vortex interactions. Moreover, we have used the phenomenological 
relations such as H,,(T) = [(In K ) / ~ ~ K ] H , ( T ) ,  H a ( T )  = ~ ~ K H , ( T )  and 
H,(T) = Qo/2n~ /ZS(T)A(T)  [ 1 5 ] .  Hereweshould remark that thetemperatureeffects 
enter not only through the stochastic term C,(T)F(z, t )  but also through the parameter 
CzW. 

The important energy scales in the problem are the line tension &(T)  and the thermal 
energy k,T. We consider a system with kBTc/&(0)d = 5 X 10-3/ln K ,  d = SOE(0) and 
K = 2. We also set a = E(0) and R ,  = (0,O). This choice of parameters enables us to 
solve the stochastic equation with reasonable speed and gives a model for the study of 
fundamental properties of the VL motion, although the parameter set does not directly 
describe a specific material. 

The outline of the procedure of the present simulation is as follows. A VL expressed 
in Cartesian coordinates by 

R(s ,  4 = (x(s, 0 ,  Z(S, 4 )  ( O G S S L . )  (11) 

with the natural coordinates along the VL and the total length L of the VL is discretized 
as 

R,(r)  = Ms,, 0,  z(s i ,  0) = ( x i ( r ) ,  z i ( t ) )  (12) 

withs, = (L/N)i (0 S is N), N = [L/AL..] and AL. = /ZS(0)/4. Here [L /AL]  denotes the 
nearest integer to L/AL.  The curvature K, and the normal unit vector ni at s = sican be 
approximated, respectively, by [16] 

Ki = 5(0) - ‘ (ALi) - ’ (Ax,  A’z, - A’xi Az , )  (13) 

ni = ( A L ~ ) - ~ ( - A Z ~ ,  AX,) (14) 

ALi = [(Axi)’ + (Azi)’]’l’ (15) 

Axi = ( X i + ,  - X i - , ) / Z  (16) 

A’xi = x i + ,  + x i - ,  - 2xi. etc. (17) 

with 
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Figure 2. VI motion at T = 0 for n = 1 and j/jo = 
0.1. The fullcircledenotesapinningcentre. 

lOL----- 01 1 
10- 1 

Figurc 3. Normalired pinning time I", at T = 0 for 
n = 1 as a function of a current density j l j b  The 
straight line isalsoshownwith itsslope indicated. 
Here I ,  E 5 1  denotes the pinning time at T = 0 
for e = 1 and j/j, = 0.1. 

Figure 4. Normalized pinning lime 1, at T = 0 for 
j / j ,  = 0.1 asafunctionofafractionu. Thestraight 
line is also shown with its slope indicated. Here 
I ,  = 5.1 denotes the pinning time at T = 0 for 
e= landj/j.=O.I. 

In the actual simulations, the VL is made smooth by using the third-order spline function 
after every ten time steps [17]. Then, the number N of points is redefined to keep the 
distance between the dividing points equal. The time step At is chosen to satisfy with the 
condition Atmax{C,, C,, C3,  C,] s 0.001. We also impose boundary conditions such 
that RN+l ( t )  = RN(f) andR_,(t) = R"(r). These boundary conditions mean that the mag- 
netic flux is assumed to be parallel to the z axis outside the sample. The random variable 
F(r, t)ateachsiteisindependentlyselectedfromaGaussiandistributionwithzero mean 
and standard deviation (2 At)-llz [18]. 

Infigure2weshow the time-dependent behaviour of t h e n f r o m  the initially straight 
line at T = 0 for 1y = 1 and j / j ,  = 0.1. Pinning and depinning behaviour can be seen in 
this figure. 

We study the pinning behaviour in a little more detail to estimate a time interval tp, 
which denotes the time for the VL to escape from an impurity after being trapped by it 
(called a pinning time). In figures 3 and 4, we show the pinning time at T =  0, as a 
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Figure 5. Normalized pinning time $. for n = 1 
and jJ jo= 0.1, as a function of temperature T. 
Here I ,  = 5.1. denotes the pinning time at T = 0 
for n = 1 and j/io = 0.1. 

Fgure6. Depinningtemperature T,as afunction 
of n for i/jo = 0.1 (0) and i / j o  = 0.01 (A). The 
bars indicate typical data scatterers. The full 
nweadenote equation (19) withp = 2.48. 

function of the current density j / j o  and the fraction a, respectively. From these figures 
we find that the pinning time f p  at T = 0 has the relation 

tp x a2(j/ jo)-2.  (18) 
We have numerically checked that the above is unchanged even for the initially random 
lines. This result is understood as follows. Recalling that approximately we have n . 
aR/dt = ah/atand K = a2h/ar2 [19], We can regard this model as a diffusion equation 
with diffusion constant C,, biased velocity C2(0) and pinning strength C,. Thus, the 
pinning time is estimated to be the diffusion time for a VL to pass an effective range of a 
pinning centre. Following 1191, we find that such effective region is proportional to C3/ 
C2(0). Therefore, we obtain the relation tp a (1/C,)[C3/C,(0)]2 and thusequation (18). 

Finally, we study the temperature effect on the above results. In figure 5, the pinning 
time is shown as a function of temperature for the case with a = 1 and j / j o  = 0.1. We 
find that the pinning time rapidly falls to be zero at a certain temperature Tp, below T,. 
This result suggests that the thermal behaviour of the system under the transport current 
changes at T = T,. In figure 6, the depinning temperature T,, at which the pinning time 
becomes zero, is shown as a function of a for j / j o  = 0.1 and 0.01. These results are 
obtained by averaging over 50 independent simulation runs. These depinning pheno- 
mena occur when the magnitude of the thermal fluctuation C,(T)  is comparable with 
the effective pinning region C$C2(T). Thus, we obtain the following relation: 

a(1 - Tp/T,)3'2 = p(j/jo)(Tp/Tc)1'2 (19) 

with a positive constant p. In figure 6, we have also plotted the relation (19) with 6 = 
2.48 as full curves for comparison. We can see that the relation (19) agrees well with 
numerical results. We have numerically checked that the relation (19) as well as (18) are 
unchanged for 0.1 S (Y S 1 and 0.01 S j / j o  S 1, except for the irrelevant coefficient like 
p ,  'even when the choice of parameters set is changed. Finally, we comment on the 
planar approximation used above. Off-plane fluctuations neglected herecouldgrow and 
become important, especially as the line is dragged across the impurity. Thus, we 
guess the present results should not be taken too literally. Such effects are now under 
consideration. 
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In summary, on the basis of stochastic equation of motion for a single planar VL, we 
have carried out several simulations of the dynamical behaviour of a VL, especially the 
pinning time. In this stochastic equation, VL tension, external transport current, a 
pinningcentre and thermal fluctuations are taken into account. We have found that at 
zero temperature the pinning time fp is satisfied by the relation (18) and that there exists 
a depinning temperature above which a VL is free from a pinning centre because of the 
thermal fluctuations. To our knowledge, these behaviours, however, have not yet been 
reported experimentally. A systematic experimental study of the temperature- and/or 
the time-dependent behaviour for the pinning is thus highly desirable. At the present 
stage, it is difficult to guess the dynamical behaviour of the VL lattice in random media 
since only the dynamics of a single VL have been presented. To do so, we must take into 
account other effects neglected here, such as vortex-vortex interactions, off-plane 
fluctuations and detailed temperature dependence of superconducting parameters as 
well as random impurities. Moreover, to have confidence in the stochastic equation (5) 
we need to discuss the corresponding Fokker-Planck equation, and to solve it in simple 
cases. These problems are interesting and still remain open. However, we expect that 
the present method of research will provide us with a useful tool for studying such effects 
and also the essence of the dynamics of other topological defects. 
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